Friday, December 24, 2010

injection molding



Equipment
Injection molding machines have many components and are available in different configurations, including a horizontal configuration and a vertical configuration. However, regardless of their design, all injection molding machines utilize a power source, injection unit, mold assembly, and clamping unit to perform the four stages of the process cycle.
Injection unit
The injection unit is responsible for both heating and injecting the material into the mold. The first part of this unit is the hopper, a large container into which the raw plastic is poured. The hopper has an open bottom, which allows the material to feed into the barrel. The barrel contains the mechanism for heating and injecting the material into the mold. This mechanism is usually a ram injector or a reciprocating screw. A ram injector forces the material forward through a heated section with a ram or plunger that is usually hydraulically powered. Today, the more common technique is the use of a reciprocating screw. A reciprocating screw moves the material forward by both rotating and sliding axially, being powered by either a hydraulic or electric motor. The material enters the grooves of the screw from the hopper and is advanced towards the mold as the screw rotates. While it is advanced, the material is melted by pressure, friction, and additional heaters that surround the reciprocating screw. The molten plastic is then injected very quickly into the mold through the nozzle at the end of the barrel by the buildup of pressure and the forward action of the screw. This increasing pressure allows the material to be packed and forcibly held in the mold. Once the material has solidified inside the mold, the screw can retract and fill with more material for the next shot.
Clamping unit
Prior to the injection of the molten plastic into the mold, the two halves of the mold must first be securely closed by the clamping unit. When the mold is attached to the injection molding machine, each half is fixed to a large plate, called a platen. The front half of the mold, called the mold cavity, is mounted to a stationary platen and aligns with the nozzle of the injection unit. The rear half of the mold, called the mold core, is mounted to a movable platen, which slides along the tie bars. The hydraulically powered clamping motor actuates clamping bars that push the moveable platen towards the stationary platen and exert sufficient force to keep the mold securely closed while the material is injected and subsequently cools. After the required cooling time, the mold is then opened by the clamping motor. An ejection system, which is attached to the rear half of the mold, is actuated by the ejector bar and pushes the solidified part out of the open cavity.


Machine specifications
Injection molding machines are typically characterized by the tonnage of the clamp force they provide. The required clamp force is determined by the projected area of the parts in the mold and the pressure with which the material is injected. Therefore, a larger part will require a larger clamping force. Also, certain materials that require high injection pressures may require higher tonnage machines. The size of the part must also comply with other machine specifications, such as shot capacity, clamp stroke, minimum mold thickness, and platen size.Injection molded parts can vary greatly in size and therefore require these measures to cover a very large range. As a result, injection molding machines are designed to each accommodate a small range of this larger spectrum of values. Sample specifications are shown below for three different models (Babyplast, Powerline, and Maxima) of injection molding machine that are manufactured by Cincinnati Milacron.
----------------Babyplast--- Powerline ----Maxima
Clamp force (ton)---6.6 -----330 ------ 4400
Shot capacity (oz.)(0.13 - 0.50) (8 - 34 )(413 - 1054 )
Clamp stroke (in.)4.33 23.6 133.8
Min. mold thickness (in.)1.18 7.9 31.5
Platen size (in.)2.95 x 2.95 40.55 x 40.55 122.0 x 106.3
Tooling
The injection molding process uses molds, typically made of steel or aluminum, as the custom tooling. The mold has many components, but can be split into two halves. Each half is attached inside the injection molding machine and the rear half is allowed to slide so that the mold can be opened and closed along the mold's parting line. The two main components of the mold are the mold core and the mold cavity. When the mold is closed, the space between the mold core and the mold cavity forms the part cavity, that will be filled with molten plastic to create the desired part. Multiple-cavity molds are sometimes used, in which the two mold halves form several identical part cavities


Mold base
The mold core and mold cavity are each mounted to the mold base, which is then fixed to the platens inside the injection molding machine. The front half of the mold base includes a support plate, to which the mold cavity is attached, the sprue bushing, into which the material will flow from the nozzle, and a locating ring, in order to align the mold base with the nozzle. The rear half of the mold base includes the ejection system, to which the mold core is attached, and a support plate. When the clamping unit separates the mold halves, the ejector bar actuates the ejection system. The ejector bar pushes the ejector plate forward inside the ejector box, which in turn pushes the ejector pins into the molded part. The ejector pins push the solidified part out of the open mold cavity.


Mold channels
In order for the molten plastic to flow into the mold cavities, several channels are integrated into the mold design. First, the molten plastic enters the mold through the sprue. Additional channels, called runners, carry the molten plastic from the sprue to all of the cavities that must be filled. At the end of each runner, the molten plastic enters the cavity through a gate which directs the flow. The molten plastic that solidifies inside these runners is attached to the part and must be separated after the part has been ejected from the mold. However, sometimes hot runner systems are used which independently heat the channels, allowing the contained material to be melted and detached from the part. Another type of channel that is built into the mold is cooling channels. These channels allow water to flow through the mold walls, adjacent to the cavity, and cool the molten plastic.


Mold design
In addition to runners and gates, there are many other design issues that must be considered in the design of the molds. Firstly, the mold must allow the molten plastic to flow easily into all of the cavities. Equally important is the removal of the solidified part from the mold, so a draft angle must be applied to the mold walls. The design of the mold must also accommodate any complex features on the part, such as undercuts or threads, which will require additional mold pieces. Most of these devices slide into the part cavity through the side of the mold, and are therefore known as slides, or side-actions. The most common type of side-action is a side-core which enables an external undercut to be molded. Other devices enter through the end of the mold along the parting direction, such as internal core lifters, which can form an internal undercut. To mold threads into the part, an unscrewing device is needed, which can rotate out of the mold after the threads have been formed.




Thursday, December 23, 2010

Injection Molding

Contents
1.capabilities
2. Process Cycle
3. Equipment
4. Tooling
5. Materials
6. Possible Defects
7. Design Rules
8. Cost Drivers





Injection molding is the most commonly used manufacturing process for the fabrication of plastic parts. A wide variety of products are manufactured using injection molding, which vary greatly in their size, complexity, and application. The injection molding process requires the use of an injection molding machine, raw plastic material, and a mold. The plastic is melted in the injection molding machine and then injected into the mold, where it cools and solidifies into the final part. The steps in this process are described in greater detail in the next section.


Injection molding is used to produce thin-walled plastic parts for a wide variety of applications, one of the most common being plastic housings. Plastic housing is a thin-walled enclosure, often requiring many ribs and bosses on the interior. These housings are used in a variety of products including household appliances, consumer electronics, power tools, and as automotive dashboards. Other common thin-walled products include different types of open containers, such as buckets. Injection molding is also used to produce several everyday items such as toothbrushes or small plastic toys. Many medical devices, including valves and syringes, are manufactured using injection molding as well.

Typical Shapes: Thin-walled:
CylindricalThin-walled:
CubicThin-walled:
Part size: Envelope: 0.01 in³ - 80 ft³Weight: 0.5 oz - 55 lb
Materials: Thermoplastics
Surface finish - Ra: 4 - 16 μin
Tolerance: ± 0.008 in.
Max wall thickness:0.03 - 0.25 in
Quantity: 10000 - 1000000
Lead time: Months
Advantages:
Can form complex shapes and fine details
  • Excellent surrface finish
  • Good dimensional accuracy
  • High production rate
  • Low labor cost
  • Scrap can be recycled

Disadvantages:
Limited to thin walled parts

  • High tooling and equipment cost
  • Long lead time possible

Applications:
Housings, containers, caps, fittings


2.Process Cycle

The process cycle for injection molding is very short, typically between 2 seconds and 2 minutes, and consists of the following four stages

  • Clamping: Prior to the injection of the material into the mold, the two halves of the mold must first be securely closed by the clamping unit. Each half of the mold is attached to the injection molding machine and one half is allowed to slide. The hydraulically powered clamping unit pushes the mold halves together and exerts sufficient force to keep the mold securely closed while the material is injected. The time required to close and clamp the mold is dependent upon the machine - larger machines (those with greater clamping forces) will require more time. This time can be estimated from the dry cycle time of the machine
  • Injection - The raw plastic material, usually in the form of pellets, is fed into the injection molding machine, and advanced towards the mold by the injection unit. During this process, the material is melted by heat and pressure. The molten plastic is then injected into the mold very quickly and the buildup of pressure packs and holds the material. The amount of material that is injected is referred to as the shot. The injection time is difficult to calculate accurately due to the complex and changing flow of the molten plastic into the mold. However, the injection time can be estimated by the shot volume, injection pressure, and injection power
  • Cooling - The molten plastic that is inside the mold begins to cool as soon as it makes contact with the interior mold surfaces. As the plastic cools, it will solidify into the shape of the desired part. However, during cooling some shrinkage of the part may occur. The packing of material in the injection stage allows additional material to flow into the mold and reduce the amount of visible shrinkage. The mold can not be opened until the required cooling time has elapsed. The cooling time can be estimated from several thermodynamic properties of the plastic and the maximum wall thickness of the part
  • Ejection - After sufficient time has passed, the cooled part may be ejected from the mold by the ejection system, which is attached to the rear half of the mold. When the mold is opened, a mechanism is used to push the part out of the mold. Force must be applied to eject the part because during cooling the part shrinks and adheres to the mold. In order to facilitate the ejection of the part, a mold release agent can be sprayed onto the surfaces of the mold cavity prior to injection of the material. The time that is required to open the mold and eject the part can be estimated from the dry cycle time of the machine and should include time for the part to fall free of the mold. Once the part is ejected, the mold can be clamped shut for the next shot to be injected.

After the injection molding cycle, some post processing is typically required. During cooling, the material in the channels of the mold will solidify attached to the part. This excess material, along with any flash that has occurred, must be trimmed from the part, typically by using cutters. For some types of material, such as thermoplastics, the scrap material that results from this trimming can be recycled by being placed into a plastic grinder, also called regrind machines or granulators, which regrinds the scrap material into pellets. Due to some degradation of the material properties, the regrind must be mixed with raw material in the proper regrind ratio to be reused in the injection molding process

Extrusion Blow Molding




Capabilities of blow molding

Shapes: Thin-walled:
CylindricalThin-walled:

CubicThin-walled: Complex
Part size: Envelope: Up to 105 ft³
Materials: hermoplastics
Surface finish - Ra: 250 - 500 μin
Tolerance: ± 0.04 in.
Max wall thickness:0.015 - 0.125 in.
Quantity: 100000 - 1000000
Lead time: Days
Advantages:
Can form complex shapes with uniform wall thickness

  • High production rate
  • Low labor cost
  • Little scrap generated

Disadvantages:
Limited to hollow, thin walled parts with low degree of asymmetry

  • Poor control of wall thickness
  • Poor surface finish
  • Few material options
  • High tooling and equipment cost

Applications:
Bottles, containers, ducting

blowmolding

Blow molding is a manufacturing process that is used to create hollow plastic parts by inflating a heated plastic tube until it fills a mold and forms the desired shape. The raw material in this process is a thermoplastic in the form of small pellets or granules, which is first melted and formed into a hollow tube, called the parison. There are various ways of forming the parison, as explained below. The parison is then clamped between two mold halves and inflated by pressurized air until it conforms to the inner shape of the mold cavity. Typical pressures are 25 to 150 psi, far less than for injection molding. Lastly, after the part has cooled, the mold halves are separated and the part is ejected. Parts made from blow molding are plastic, hollow, and thin-walled, such as bottles and containers that are available in a variety of shapes and sizes. Small products may include bottles for water, liquid soap, shampoo, motor oil, and milk, while larger containers include plastic drums, tubs, and storage tanks. Blow molded parts can be formed from a variety of thermoplastic materials, including the following:
1.Low Density Polyethylene (LDPE)
2.High Density Polyethylene (HDPE)
3.Polyethylene Terephtalate (PET)
4.Polypropylene (PP)
5.Polyvinyl Chloride (PVC)
As mentioned above, there are different methods used to form the parison which distinguish the following three forms of blow molding:
  • Extrusion blow molding - An extruder uses a rotating screw to force the molten plastic through a die head that forms the parison around a blow pin. The parison is extruded vertically between the two open mold halves, so they can close on the parison and blow pin. Pressurized air flows through the blow pin to inflate the parison. This is the most common type of blow molding and is used to manufacture large quantities of relatively simple parts.
  • Injection blow molding - The molten plastic is injection molded around a core inside a parison mold to form the hollow parison. When the parison mold opens, both the parison and core are transferred to the blow mold and securely clamped. The core then opens and allows pressurized air to inflate the parison. This is the least commonly used method because of the lower production rate, but is capable of forming more complicated parts with higher accuracy. Injection blow molding is often preferred for small, complex bottles, such as those in medical applications.
  • Stretch blow molding - The parison is formed in the same way as injection blow molding. However, once transferred to the blow mold, it is heated and stretched downward by the core before being inflated. This stretching provides greater strength to the plastic. Stretch blow molding is typically used to create parts that must withstand some internal pressure or be very durable, such as soda bottles.

plastics introduction

Plastics

Plastic is a commercial name for a group of materials that while being processed, can be pushed or formed into almost any desired shape and then retain that shape. Plastics can be cast, molded, or pressed into an unlimited variety of shapes. They are one of the most used materials on a volume basis in industrial and commercial life. Plastics are on par with metals, wood, and ceramics and are essential to the needs of virtually the entire spectrum of business. Plastics, properly applied, will perform functions at a cost that other materials cannot match. Most plastics can be classified as either thermoplastic or thermosetting materials. Thermoplastic materials can be formed into desired shapes under heat and pressure and become solids on cooling. If they are subjected to the same conditions of heat and pressure, they can be reprocessed into new shapes. Thermosetting materials are like concrete, once processed and shaped, they cannot be reshaped. Today, the vast majority of plastics are thermoplastics. Plastics are made up of polymers. Polymeric materials are characterized by long chains of repeated molecule units known as "mers". These long chains intertwine to form the bulk of the plastic. The ways in which the chains intertwine determine the plastic's macroscopic properties. Typically, the polymer chain orientations are random and give the plastic an amorphous structure. Amorphous plastics have good impact strength and toughness. Examples include acrylonitrile-butadiene-styrene (ABS), styrene-acrylonitrile copolymer (SAN), polyvinyl chloride (PVC), polycarbonate (PC), and polystyrene (PS). If instead the polymer chains take an orderly, densely packed arrangement, the plastic is said to be crystalline. Crystalline plastics share many properties with crystals, and typically will have lower elongation and flexibility than amorphous plastics, and better chemical resistance. Examples of crystalline plastics include acetal, polyamide (PA; nylon), polyethylene (PE), polypropylene (PP), polyester (PET, PBT), and polyphenylene sulfide (PPS). Advances in chemistry have made the distinction between crystalline and amorphous less clear, since some materials like nylon are formulated both as a crystalline material and as an amorphous material